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1. Introduction. This paper investigates a particular form (1) in section

2 of a Riccati equation that is quadratic in the independent variable t. The

approach to the problem of the existence of a global solution is not from the

usual initial-value standpoint, but is based on a desired feature of the solution

for large t which is given by properties (i) and (ii) of the Theorem in section

2. The form (1) of the equation makes it easy to draw rough sketches of how the

solutions behave depending on where the initial point is selected. In particular,

it becomes plausible that there exists a solution defined for all t that

satisfies properties (i) and (ii), but it is by no means clear that there is only

one such solution. That this is the case indicates that this distinguished

solution is extremely unstable. Indeed, one of the implications of Lemma 5 in

section 3 is that every other solution diverges from the distinguished solution

as t - OD

Our investigation is motivated by the approach used in [3] and [6] to

analyze the equal-accuracy noisy duel problem for two players having finite

unequal units of ammunition. This approach leads to asymptotic distributions

of normalized times of first fire for the two players. The hazard rates for

these distributions are expressed in terms of a solution to a Riccati equation

of the form (1), and the distributions themselves are expressed in terms of a

solution to a related Hermite equation.

A brief outline of these connections is given in section 4. The reader

may find it helpful to read that section in conjunction with the statement of

the Theorem to understand the reason for deriving the various properties of the

distinguished solution.

2. Statement of the Theorem. The principal conclusions we desire can be
AIR FORCE FFC'E 01? SCETl 'I7SC"
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THEOREM. Suppose (x is a positive number and i' 02 are linear functions

i = t + yi' where 82 < a, and I > 0. Then there is exactly one solution

of the Riccati equation

(;) v'(t) = c[v(t) - 2 1 (t)][v(t) - 2 2(t)]

that has the following two properties: There is a number to  such that

(i) The domain of v includes the interval [to,°);

(ii) v(t) 201 (t) > 0 for t > to.

Moreover, thi' -,lution has the additional properties:

(iii) The 4-rrtain of v is (_oyxo).

Aetossion For
(iv) v(t)- 2 1(t) > 0 for all t. N15 GA&I -DTIS ?AB

(v) f"[v(t) - 2(l(t)]dt = r[v(t) - 2P2 (t)Idt = TA. AoUnd

__ JUstIficato ,~
A) v(t) - 2 1 (t) - 0 as t + .-

ii) v'(t) -2 as t co. Distributic,,

If addition, a2 < 0, then the following hold: Avallat1i7 .' des'vA. 0 or

ii) If t o  is a number, then the conditions Dlst -

v(t)- 2(t) > 0 for t > to

and v(to) - 2 2 (tO) 0 0

hold exactly when (DTIcN\

loopy)
l) - 2 (t0) - z0 (B1-62)/2,2

where is the real zero of the Weber parabolic cylinder function

Dp+ with p - a1/(=2- S

(ix) With t as in (viii) and, for i - 1,2, we define fi(t) x ) (t),

where xl(t) a c[v(t) - 24i(t)] and Ii(t) - exp(-O tx (T )d) 1W have:

(ixa) oI(t) < 02 (t) when to < t < -t0 - 2n and

I (t) > €2(t) when t " -to - 2n,

Y t - -n L the solution of Xl(t) = x2 (t).

ii
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1. 3

(ixb) f 1 is decreasing and positive on (_oo,o).

(ixc) f is positive 2n (to0,c) and has a maximum value that occurs

•~~ ~ ~ ~ ~~~~ ......a---.uber_._>-n > t o

(ixd) tf 2(t)dt < o

0

(ixe) Ct7 tfl(t)dt = oo
t0 1

n the process of proving this theorem, two forms of the solutions are

dev Ioped.
6 ' (s)

(A) v(t) = 20 1 ( t )  V(S)

where s = 6(t+t), 6 = AX(1- ad, n = (Yl-Y2)/B 1-B2)

and 4(s) = Yo(S) + Yl(S),

with: 4 = -2F(a + 1/2)/r(a), a = /2(gl-

Yo(S) = s IF1(a + 1/2, 3/2; 
s2)

yl(s) = IF1(a, 1/2; s

and 1F denotes the confluent hypergeometric function

00 n
F (= P(b) I r.(a+n) z

bI z) r(a) n-0 r(b+n) n!

+F(a b;L z) (Z)

(B) v(t) - 2 2(t) + - D (z)
p

where z - 6v'2(t+4), p I

and D is the Weber parabolic cylinder function (cf. (71).
p

D p(z) - F(1/2)2 p/2exp(-z 2/4)Rp (z)

R(z) (1/2 p/2, 3/2; z 2 /2).p- p/ 2 ) 1 /2) r(-p/2) IF I
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K: 3. Proof of the Theorem. The demonstration of the conclusions is broken down

into several stages.

LEMMA 1. A function v is a solution of equation (1) on an interval I

exactly when

- - --- - -------- 1 x'*(2) L _. _+

where x(t) # 0 for t in I and is a solution of

(3) x"(t) - q(t)x(t) = 0

with q = t2(4i-¢2 )2 + "1+52)

Proof. We re-write equation (1) in the form

2
v' + 2Av + Bv - C = 0

where A = (( 1+ 0 2), B = -c, and C = 4(#l0 2 "

We then apply the result in Reid [5) that v is a solution of (1) on an interval

I if, and only if, v = u/x, where x(t) # 0 on I and the pair (x,u) is

a solution on I of the linear system

x' = Ax + Bu

u' = Cx - Au.

But this system is equivalent to equation (3), as can be seen through the connec-

tion u = (x'-Ax)/B. Calculating v = u/x then gives the form (2).

In order to transform equation (3) into more comprehensible forms, first

we make a change of independent variable.

LEMMA 2. The general solution of equation (1) is

v(t) = € 1 (t) + 02 (t) a w(s)

where s - 6 (t+rD , 6 ='?7(8-), n- (y--YR(i. 1 - 2)1 2er__1-_2)e
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and w is a non-vanishing solution of the Weber equation

(5) w"(s) + (E-s )w(s) = 0

with E = (2+6d/02-81).

While the form (5) is simpler than the form (3), it is not easy to see when

its solutions are non-vanishing; the equation has an ocixt = 4nu~val about

s = 0 if E > 0. However, we can make the change of dependent variable

y(s) = exp(s 2/2)w(s), which transforms (5) into a Hermite equation and clearly

preserves the non-vanishing of solutions. In fact, going through the calculations

gives the following result.

LEMMA 3. The genera solution of equation (1) is

_ y' (s)
(6) v(t) = 2d1 (t) - y(s) 

where y is a non-vanishing solution of the Hermite equation

(7) y"(s) - 2sy'(s) - 4ay(s) = 0

with a = 61/2(81-62).

Before continuing, we point out that the procedure of transforming an equa-

tion of the form (3), where q is quadratic, first into the form (5) and then

into the form (7) is well-known. It is used, for example, in solving the time-

independent Schrdinger equation for a harmonic oscillator.

Now, the general solution of (7) can be expressed in terms of the confluent

hypergeometric functions. In fact, we have the following result, which may be

verified by direct calculation or by referring to Slater [7].

LEMMA 4. Let yo and y1  denote the solutions of equation (7) that satisfy

the initial conditions

I,'
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yo(o) = 0, y;(O) = 1

yI(O) = 1, YI(O) =0.

Then the functions YO and y1  are given by

(8) ~~yO(s) = s I F I(a + 1/2, 3/2;s2

(9 a, 112;s2

Wnow focus our attention on property (ii) in the statement of the Theorcm.

The next result shows that, up to a multiplicative constant, there is only oner solution of (7) which, when substituted in (6), can possibly work.

LEMMA 5. Every non-trivial solution y = c yA + c ly1  of equation (7) has the

property that y' (s) /y (s) +) o as s -* oo unless the constants c0  and c1  satisfy

the relation

c FNa) + 2cra+ 1/2) = 0.

Proof. We apply two results about confluent hypergeometric functions given in

Slater [71. We have the derivative relation

d F (a, b; z) = F (a+1, b+1; z)
dz 1 1 b 1 1

and the asymptotic expansion as z -* co

F(,b; Z) = r~)exp(z) z a.b(1+0(z ))1

If we now set y =c y + c y where c 2 + c 2 > 0 and apply these identities,

then after some simplification we obtain the results that as s -

y'(s) r= /)x~ s2 I P(a)c 0 s-211+0(s-2 )] + c r(a)11+0(s ) +

2c r(a+1/2)[1+(s-2 )J1,
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r(l/2)exp(s 2)s2a-IY(s) ra)r(a+2) co'(a) [1+0(s - ) + 2clF(a+1/2)[1+0(s-)]I

Therefore, as s -+ oD we have y'(s)/2sy(s) -* 1, which implies y'(s)/y(s) -,

unless the constants c0  and cI make this form indeterminate. But this is

precisely when c F(a) + 2c1F(a+1/2) = 0.

Now recall that the variables s and t are related by s = 6(t+n),
where 6 > 0, so the conditions s -* and t - are equivalent. Then the

form (6) for v(t) shows that a solution that exists for large t will have

v(t) - 24 1(t) -. -c as t - c unless c. and c1  satisfy the relation stated

in Lemma 5. Furthermore, the solution of (7) enters into the form (6) only

through the ratio y'/y, so one of the constants c0  and c1  may be chosen

arbitrarily. Since we want to avoid solutions y that vanish, we choose c1 = I

and c = -2r(a+1/2)/F(a). We summarize what we have obtained so far as follows.

LEMMA 6. A necessary condition for a solution v of equation (1) to ha.,

properties (i) and (ii) of the Theorem is that

(10) v(t) = 2¢1 (t) - (

where i(s) = CyO(s) + yl(s) with C = -2F(a+1/2)/P(a) and yO,,y are defined

by formulas (8) and (9), respectively.

Notice that (10) is the form (A) of the solution v that is given in the

remarks following the Theorem. We now proceed to show that the particular solu-

tion q of (7) forces the corresponding solution v of (1) to have properties

(i) through (ix) of the Theorem.

LEMMA 7. The solution C yo + Y, of equation (7) satisfies the inequalities

i(s) 0 and i'(s) < 0 for all s.
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Proof. The major theoretical tool we need to prove this result is stated

in the Appendix. In order to apply that theorem to our problem, we put equation

(7) in self-adjoint form by multiplying both sides by exp(-s2). The result is

the equivalent equation

(ry')' - py = 0,

2where r(s) = exp(-s ) and p(s) = 4ar(s). Since r and p are continuous

with r(s) > 0 and p(s) > 0 for all s, we can conclude that if y = Oy0 +y1

is the solution of (7) with 0 = lim - y(s)/yo(s), then y(s) > 0 and

y'(s) < 0 for all s. We now show that 0 =

To do this, we proceed as in the proof, of Lemma 5. Using the definition of

Yo and Yi, and the asymptotic expansion of the confluent hypergeometric functions

again, we obtain, as s + c:

= r(1/2) e (s2)s2a-1 I -2y1 (s) r(a) (1+0(s-))

F (I/2))e2p2(s2)s-2

and yO(s) = 2f(1+/2) exp(s )s (1+0(s- ))

This makes it clear that 0 = -2r(a+1/2)/r(a) =

By referring to the form (10) and applying the result of Lemma 7, we

immediately have;

COROLLARY. The solution v of equation (1) defined hy (10) satisfies

properties (iii) and (iv) and, a fortiori, satisfies properties (i) and (ii).

In order to tackle properties (v) through (viil), we develop the second form

(B) of the solution v.

LEMMA 8. The solution - Y0 + y1  of equation (7) can be written in the

form

(11) (s) -2ar(a+1/2) (2/4D
2 a r(a/2) exp(z /4)D (z),

r(/2 i
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where z = s = r(t+n) and D is the Weber parabolic cylinder function withP

p = -2a =

Proof. The result follows by using the definition of D and simplifyingP

the right-hand side of (11).

LEMMA 9. The solution v of equation (1) defined by (10) can be written in

the form

(12) v(t) = 2P (t) + Dp+(z)
*2 D p(z)

Proof. To obtain this form, first we use formula (11) for P and calculate

'/'. Keeping in mind that z = sv'2, we obtain

= r+2- D' (z)V(s) -- s + p
p(s) D (z)

P

Then we use the identity (cf. [41)

(13) D'(z) = (z/2)D (z) - D (z).
p p p+1

The result is that

Dp+ (z)

(14) = 2s - / p+l
O(s) D (z)p

Substitution of this expression into formula (10) and use of the relation

s = 6(t+n) give the form (12) for v, which is the form (B) that was claimed.

Properties (v), (vi), and (vii) can now be attacked by using the following

asymptotic expansion of the parabolic cylinder functions (cf. [4]). As z +

(15) D (z) = exp(-z 2 /4) zP[l - 1 + 0(z-4

p2z 2 +(

LEMMA 10. If Cyo + yI, then qp(s) + as s0-++ .

Proof. We return to formula (11) for , keeping in mind the connection
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z so2" and the fact that p = -2a U O. Substitution of the result of (15) into

(11) yields, as s -+ c,

(16) 2 a F(a+1/2) zp[1 p(p-l) + 0(z-4),
F(1/2) 2z2

so i(s) -* 0 as s 0 w. Since p(s) >, 0 for all s, the conclusion follows.

COROLLARY. The solution v of equation (1) defined ty (10) satisfis property (v).

Proof. Using the form (10) with the connection s = 6(t+n) shows that if we

fix some t and let so  be the corresponding value of s, then

(17) ft (v-21)M
t 0 (v2S 0 0 ~f ~'4

But s + e as t + c, so ft (v-2 1 ) = co follows immediately from Lemma 10.

0
For the second integral, we again fix t and then apply property (iv) to an

interval [tot]. The result is

ft (v-2 ) > ft (2 1)-2 2 )

t0 2 t0 1

2 2(031-82)(t -t o ) + (y1-y2 )(t-t O )

which + oo as t c , since I > q2"

LEMMA 11. If = yo + yl, then i'(s)/(s) - 0 as s o

Proof. We begin by using formula (14), recalling again that z = sV2. The

result is

D (z)

tp(s) D (z)"
p

But z o as s o, and if we use just the result

D (z) = exp(-z
2 /4) zP(1 + O(z- 2 ))

P



from formula (15), we obtain

Dp+l (z) zp+ I [1 + O(z- )] z O(z -2 )
D (z) zp [I + 0(z-2 1 + 0(z- 2

which approaches zero as z -, .

COROLLARY. The solution v of equation (1) defined by (10) satisfies property

(vi).

The asymptotic expansion (15) can be used again to establish property (vii).

First, we isolate the most important calculation that is involved.

LEMMA 12. The following limit relation holds for the parabolic cylinder

functions:

/ p+l
SD) (z) +1 as z co.

Proof. After using the quotient rule to calculate the indicated derivative,

we use in turn the identity (13) and its companion (cf. 14])

D' (z) = (p+1)D (z) - (z/2)D (z).
p+l p

The result is

(18) D (z) = (p+l) (Dp ])(z) - z _ -)(z).

If we apply (15) and do some re-shuffling of factors, we find that

D- - z\Dp W -2 4 [-p + z O(z-)]

pD(z il(D ~pI)(Z) )] -4

which approaches -p as z m. The conclusion then follows immediately.

COROLLARY. The solution v of equation (1) defined b (10) satisfies

property (vii).



12

Proof. If we look at the form (12) of the solution, we obtain

v'(t) 20 24(t) + cc ( Z) z)p/

= 282 + 2 (z),

since z = 6M2(t+n). But z as t o, so Lemma 12 implies that

22
v' (t) + 22 as 2

Using the definition 6 = yfa(8 1-82 ) then gives the result.

Next, we use the following result about the parabolic cylinder functions.

LEMMA 13. If 82 < 0 < 8 I a = 
8 l/( 8 2 8i), then:

(i) D (z) > 0 for all z;

(ii) Dp+ 1 has exactly one real zero zo0 , and D+1(z) > 0 exactly when

z>z 0

0*

Proof. The hypotheses imply that 0 < p+l < 1. Hence, the result follows

immediately (cf. [1]).

COROLLARY. The solution v of equation (1) defined !y (10) satisfies

property (viii).

Proof. If we apply Lemma 13 to the form (12) of the solution, we see that

v(t) - 202 (t) > 0 for t > t

and v(t O) - 20 2 (t O) = 0

exactly when t satisfies z0 = 62(toT). A simple calculation using the

definitions of Olt 02' 6 and q then gives the result.
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LEMMA 14. The functions Di defined in (ix) are related by

(19) (D2 (t) =  G(t) 4)l(t),

where G(t) exp(s 2_ s2) with s = 6(t+n) and so =(to+T).

Proof. Since xi(t) = e[v(t)-2 i(t) ], we have x2(t) = XI(t) + 26 2(t+n),

from which (19) follows easily.

COROLLARY. The functions atisfy (ixa).

Proof. Since t satisfies (viii), we have

(6 1- 62)(t+n) = 0l(t0 ) - 2 (to) = Zo/0 1- 2)/2,

which is negative because the zero z0  of D p+l(z) with 0 < p+l < 1 is

negative (cf. (1]). Hence, t0+n < 0 since 31 > 2' so so < 0. Therefore,

G(t) > I exactly when so < s < -so , i.e., when t0 < t < -to - 2.

LEMMA 15. The solution 4 = Cyo + yl of equation (7) has 4)"(s) > 0

for all s.

Proof. If there were a value s1 at which V"(sI) = 0, then by taking

the derivative with respect to s of both sides of (7) with y replaced by

p, we would have i"'(sl) (2+4a)p'(sl). Since just the hypotheses 82 < B1

and > 0 imply a > 0, and Lemma 7 implies <'(s < 0, it follows that

V"'(s I < 0. This says that at sI , ip changes from being convex to concave,

and hence, by this very argument, can never change back to being convex. But

that contradicts the result of Lemma 7. So, I"(s) is never zero. But, by

replacing s. by 0 in (7), we have i"(O) = 4a > 0. Since ip" is continuous,

the result follows.

COROLLARY. The function fI satisfies (ixb).

Proof. Since property (iv) implies x1 (t) > 0 for all t, it follows

from the definition of f that fl(t) > 0 for all t. To show that f1 is
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decreasing, notice that form (A) of the solution to equation (1)

-dimplies that xl(t) = -4'(s)/(s) = a (s).

Hence, we have

(20) W(t) = (s)/s

where, as in Lemma 14, s = 6(t+n) and so = 6(t0 +n). But then

2SW = -',(t) = -6W'(s)/M(So), so f (t) = -6 2''(s)/M(sO) < 0 by Lemmas

7 and 15.

LEMMA 16. The function f2 satisfies (ixc).

Proof. That f2 (t) > 0 for t > to and f2 (to) = 0 follows from the

definition of f2 and (viii). Next, we show that f2(t) 0 as t - c.

For, the definition of f2  and relation (19) imply f2  -4 = -(G%)'. Using

(20) then gives

(21) f2 (t) = 6G(t)qI(t)[2s- i'(s)/i(s)].

Since t > t0  corresponds to s > sO, (20) and Lemma 7 imply

(22) 0 < -1 (t) < 1 for t > to.

Also, Q'(s)/(s) - 0 as t + c by Lemma 11. Finally, 2sG(t) + 0 as t +0

by the definition of G. Hence, f 2 is a continuous function with f2 (t) > 0

on (toc.) while f2(t0 ) = 0 =f 2(0), so f2  has an absolute maximum in (t0 ,C).

To facilitate the calculation of f2' we first use (14) and (19) to re-write

(21) as

(23) f 2 (t) = 2(t) Dp+l(z)/Dp (z).

with z r26(t+n) as before. Taking the derivative of both sides of (23)

with respect to t and using (18) as well as f we find that
f2-

f'(t W 26 2 (t)[p+l - zD (z)/D (z).22p+l p
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Since t > to  corresponds to z > zO , where z is the (negative) zero of

D+l(z), it follows from Lemma 13 that f (t) > 0 for z0 < z < 0, i.e.,

to < t < -n. Hence, the maximum of f2 occurs at some t > -n.

In order to deal with (ixd) and (ixe), we use f. = -4! and integration1 1.

by parts to get

(24) kft Tf i(T)dT = t 0 - ti(t) + ft i(T)dT.
0 0

Then (19) and (22) easily yield

LEMMA 17. The function f satisfies (ixd).
__ 2

Finally, (20) and the asymptotic expansion expansion (16) for q) show

that -I(t) behaves like tp  as t - -, where p =I/2-B1) . Since

2 < 0 < I implies that -1 < p < 0, it follows readily from (24) that

LEMMA 18. The function f satisfies (ixe).

4. An application to a noisy duel problem. In (31 and [6) appears a

dynamic programming approach to the m vs. n equal-accuracy noisy duel

problem, where the positive integers m < n represent the units of ammunition

the two players have. The approach begins by allowing either of the players

to fire a unit of ammunition only at times corresponding to points of a discrete

grid of the interval [0,I], which is interpreted as the interval of probabilities

of either player destroying the other if a unit is fired. This produces a

finite sequence of simultaneous games whose 2 x 2 pay-off matrices are deter-

mined by proceeding backwards inductively from the game where the probability

of destruction is unity.

Attention is focussed on an interval of grid points at which the players

have no pure strategy and which surrounds the critical probability 1/(m+n).

It is found, under suitable hypotheses suggested by computer implementation
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of the above approach, that the value of the game in this interval of grid

points satisfies a difference equation. Dividing both sides of this equation

by an appropriate normalization factor and letting the mesh of the grid on

[0,11 approach zero leads to a normalized value v = v of the game thatm,n

satisfies a Riccati equation of the form (1) on the interval [-1,ao), with

ct (m+n) 2 (m+n-2)/(n-m),

2
= m,n /(ren-1) = (-n/m) ,I

C

Y (m+n-l) Cm,n . v (-I) for 1 < m < n-i,

I 2(m+n) c n m-,n_
while yI 0 for m = n 1 ,

(re+n- i) m,n
Y{2 2(m+n) • -~ • Vm-l,n (-1) for I < m < n-1,

while y = 0 for m = 1.

Here, it is known that the constants ci,j are positive for i < j, but

analytic expressions for these constants are not known, However, the hypotheses

a > 0 and B2 < 0 < 31 are evidently satisfied. Also, it is establihed in

[31 and [61 that the initial condition v(tO) - 2 2 (tO) = 0 is to hold when

t - -1. But this does not seem to be enough information to attack the

existence and uniqueness problem for (1) on [-lo0).

Instead, attention is turned to the functions defined in (ix) with t0  -1,

which corresponds in the normalization process to the beginning of the interval

surrounding probability l/(m+n) in which random strategies are to be employed.

The functions cl(t) and P2(t) represent, respectively, the probability

that the weaker player and the stronger player has a normalized time of first

fire occurring at or after t. The functions xi(t) represent the corresponding
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hazard rates for the cdf's IVi(t) E l- i(t) and the functions fi(t) repre-

sent their densities.

One of the facts derived in [3] and [61 is that the weaker player's

hazard rate x1 (t) is to be positive for t > -1. Somewhat surprisingly, the

assumption that the solution of (1) exists for large t and that x1 (t) be

positive for large t produces not only the global existence and uniqueness

result for (1) proved herein, but also some properties of the complements

Pi(t) ofthe cdf's &i(t) that could not be surmised by studying the computer

runs for the 2 x 2 games, namely:

Property (v) implies that

flX(t)dt= for i = 1,2,

so that lim Di(t) - exp (- (xiT)dT = 0,
t-*w

which implies uim (i(t) = 1.

This says that the probability is unity that each player fires at some rime

in the normalized interval -1 < t < - during which random strategies are

employed.

Property (ixa) states that the probability is greater not only for the

weaker player firing before the stronger one for normalized times near tO = -1,

but also for the weaker player firing after the stronger one for large t.

Properties (ixb) and (ixc) combine to show that the mode of f occurs

at to -1 while that of f2 occurs at a value of t greater than that at

which the two players' hazard rates are equal, which is in turn greater than

Properties (ixd) and (ixe) state that the expectation of 42 is finite

while that of PI is infinite.

J1
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Finally, information about the constants c i and the initial values

v .' (-l) tor i < j can be obtained by means of a complicated recursive

process. First, the above-mentioned fact that v n (-l)-2 2(-1) = 0 yields,

from the formulas for ot 1 2 Y1 . andy2

Vm,n (1) = 2n *c 2m + __(m_+n-) Cm-1n rn-l,n

and v (-1) 2c 2
I~ Ic1 n

Then, this relation coupled with the fact from [3) and [61 that

v (t) - 2p(t) > 0 for t > -1 implies, by property (viii), that

where z is the zero of the Weber parabolic cylinder function D+i with

p-m/(m+n). Solving this relation for cmn' using the fact that c Mn> 0,4

gives

c -z A + Bm,n m,n m,n m,n

where A [(n-m)(m-in-l)/2(m+n) 3Cm+n-2)]1/
m , n

m,n 2(m+n) 2  n-c 1n

while for n > 2,

B n __'n___ n
1,n =2(n+1) c l,n-14  (n+l)c C11

and B (n-i) .vn-2,n (1n-l,n 2n-I

and lastly that B 2 =0.

.1,
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Thus, we have c, 2  -Zl 2 /VT- at the beginning of the recursive chain.

Next, we find that c l,n -Zl,n Al,n + BI,n

expresses c l,n in terms of cl,nl I  for n > 2. Hence, the formula

v (-I) = 2c determines these initial values in a simple recursive way.* 1,x l,n

It is clear then that the values c and v (-I) can eventually be
m m,n

calculated in terms of m,n and the zeroes z but simple formulas for~M'n'

those values are not apparent.

Thus, it is indeed fortunate tha. the analysis presented here that is

germane to the noisy duel problem doe. not depend on specific information

about the coefficients in (1) be-tond the hypotheses of the Theorem. That

lack of information is compensated for by the condition that properties (i)

and (ii) are to hold.
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Appendix. The proof of Lemma 7 depends on the following results, which can

be derived by straightforward modifications of the argument given in section 9.2

of Hille [2].

THEORE4. Suppose r and p are continuous functions such that r(s) > 0

and p(s) > 0 for s real. Let y0  and yl be the solutions of

(Al) (ry')' - py = 0

that satisfy the initial conditions

Yo(O) = 0, y'(O) = I

and Y 1(O) = 1, y'(O) = 0.

Then: (a) The limits

lim Y1 (s)
0 = lims_~- yo(s)

= lim 
-

y;(s)

exist, and 6 <

(b) The solutions of (Al) passin through the point (0,1) tha have

y(s) > 0 and y'(s) < 0 for s > 0 are precisely those solutions y - Xy0+YI

that have 0 < X < p. Moreover, ever- such solution satisfies:

(b ) y(s) > 0 and y'(s) < 0 for all real s.

(b2) y'(s) < 0 over any interval on which p(s) does not vanish

identically.

(c) e = exactly when

f0 [r(y;)2 + P(y) =

a sufficient condition for which is the 
divergence of Co

r[
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